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REVIEW

Rethinking pioglitazone 
as a cardioprotective agent: a new perspective 
on an overlooked drug
Lorenzo Nesti1,2* , Domenico Tricò1,3, Alessandro Mengozzi4 and Andrea Natali1,2 

Abstract 

Since 1985, the thiazolidinedione pioglitazone has been widely used as an insulin sensitizer drug for type 2 diabe-
tes mellitus (T2DM). Although fluid retention was early recognized as a safety concern, data from clinical trials have 
not provided conclusive evidence for a benefit or a harm on cardiac function, leaving the question unanswered. We 
reviewed the available evidence encompassing both in vitro and in vivo studies in tissues, isolated organs, animals 
and humans, including the evidence generated by major clinical trials. Despite the increased risk of hospitalization for 
heart failure due to fluid retention, pioglitazone is consistently associated with reduced risk of myocardial infarction 
and ischemic stroke both in primary and secondary prevention, without any proven direct harm on the myocardium. 
Moreover, it reduces atherosclerosis progression, in-stent restenosis after coronary stent implantation, progression 
rate from persistent to permanent atrial fibrillation, and reablation rate in diabetic patients with paroxysmal atrial 
fibrillation after catheter ablation. In fact, human and animal studies consistently report direct beneficial effects on 
cardiomyocytes electrophysiology, energetic metabolism, ischemia–reperfusion injury, cardiac remodeling, neuro-
hormonal activation, pulmonary circulation and biventricular systo-diastolic functions. The mechanisms involved may 
rely either on anti-remodeling properties (endothelium protective, inflammation-modulating, anti-proliferative and 
anti-fibrotic properties) and/or on metabolic (adipose tissue metabolism, increased HDL cholesterol) and neurohor-
monal (renin–angiotensin–aldosterone system, sympathetic nervous system, and adiponectin) modulation of the 
cardiovascular system. With appropriate prescription and titration, pioglitazone remains a useful tool in the arsenal of 
the clinical diabetologist.

Keywords: Type 2 diabetes, Cardiovascular, Pharmacologic effects, PPARs, Pioglitazone, Cardiovascular risk factors, 
Cardiovascular prevention, Clinical management, Cardioprotection, Heart failure

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ 
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Early after their approval for the treatment of type 2 
diabetes (T2D) in 1985, the insulin-sensitizing agents 
thiazolidinediones (TDZs) pioglitazone, rosiglitazone 
and troglitazone displayed alleged safety concerns about 
fluid retention, increased risk of developing heart failure 

(HF), ischemic heart disease, and liver toxicity -not all 
substantiated by later observations-, determining tro-
glitazone and rosiglitazone withdrawal and subsequent 
reinstatements [1]. Moreover, concerns related to poten-
tial adverse effects of pioglitazone, including weight gain, 
bladder cancer and decreased bone mineral density with 
increased risk of fractures, have led to a progressive and 
sustained decline in pioglitazone prescriptions [2–4]. 
Nevertheless, treatment with pioglitazone is still avail-
able in most countries, is cost-effective, and has gained 
renewed popularity after novel favorable evidence [5, 
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6]. Especially after the discovery of the cardioprotec-
tive effects of sodium-glucose cotransporter (SGLT-2) 
inhibitors and glucagon-like peptide (GLP)-1 receptor 
agonists [7], the T2D treatment paradigm has faced a 
Copernican revolution, now also focusing on non-glyce-
mic, cardioprotective effects of glucose-lowering agents 
-including the oldest ones [8]. Despite the initial aversion 
due to increased HF risk, several studies have examined 
the complex metabolic and biological roles of pioglita-
zone in many cardiovascular diseases. Experimental and 
human data suggest beneficial effects on the vascular 
system, including delayed atherosclerosis progression 
and reduced cardiovascular events [9]. Although pioglita-
zone might worsen HF by inducing sodium-water reten-
tion and oedema, there are some counterarguments [10] 
: first, it does not increase mortality due to HF, second, 
it has no detectable deleterious effect on the heart [11, 
12]. On the contrary, it positively modulates several car-
diac and vascular functions, as well as some cardiovas-
cular risk factors, either directly or indirectly through its 
main target peroxisome proliferator-activated receptor-γ 
(PPAR-γ), as it will be later clarified. The non-negligible 
degree of uncertainty about the safety and the exact 
effects of pioglitazone on the cardiovascular system, 
both in research and in everyday clinical practice, makes 
it a very current topic. This is particularly relevant in a 
worldwide environment where cardiovascular diseases 
and “diabesity” are the 21st century leading pandemic, 
with a very high economic impact on the healthcare 
systems.

To clarify this issue, we reviewed the available litera-
ture on the cardiac and vascular effects of pioglitazone, 
encompassing both in vitro and in vivo studies in experi-
mental animals and humans, as well as the evidence 
generated by major randomized clinical trials (RCTs), 
to condensate and critically evaluate the evidence for an 
aware clinical use of pioglitazone.

Pioglitazone and major cardiovascular outcomes: 
revision of major clinical trials and meta‑analyses 
from the clinician’s point of view
Atherosclerosis‑related events
Growing evidence suggests a strong protective effect of 
pioglitazone on atherosclerosis-driven events of either 
cardiac or cerebrovascular nature. Already in 2005, the 
PROactive trial enlightened the role of pioglitazone in 
reducing by 16% the composite risk of all-cause mor-
tality, non-fatal myocardial infarction, and stroke in 
T2D patients at high risk of macrovascular events (HR 
0.84, 95% CI 0.72–0.98) [13]. In the last years, this once 
underrated result gained increasing attention as several 
observations pointed out the protective cardiovascular 
effect of pioglitazone in different clinical settings. In 

2017, a meta-analysis of 9 RCTs in individuals with and 
without CVD (n = 12,026) showed that pioglitazone 
reduced the risk of major adverse cardiovascular events 
(MACE, composite of non-fatal myocardial infarc-
tion, non-fatal stroke and cardiovascular death) both 
in pre-diabetic/insulin resistant subjects by 23% (0.77, 
0.64–0.93) and in diabetic patients by 17% (0.83, 0.72–
0.97) [14]. These results were confirmed by another 
meta-analysis of 10 RCTs in patients with established 
cardiovascular disease (CVD) (n = 10,095) wherein 
pioglitazone reduced recurrent MACE by an impressive 
26% (0.94, 0.69–0.92) [15]. Last year, an all-encompass-
ing meta-analysis of 26 RCTs (n = 19,645), including 
results from the studies TOSCA.IT [6], PPAR [16], and 
PRIDE [17] and run on a population composed of both 
diabetics and pre-diabetics and with different CV risk, 
confirmed a 20% reduction in the risk of MACE (0.80, 
0.71–0.89) [18]. A similar risk reduction was seen for 
two individual MACE components, non-fatal myo-
cardial infarction (20%: 0.80, 0.64–0.95) and non-fatal 
stroke (19%: 0.81, 0.67–0.94), whereas cardiovascu-
lar death (4%: 0.96, 0.74–1.18) and all-cause mortality 
(3%: 0.97, 0.80–1.14) seemed not affected. In subgroup 
analyses, the cardiovascular protective effects of piogl-
itazone were confirmed in patients with pre-diabetes 
(0.8, 0.6–0.9) and diabetes (0.8, 0.7–1.0). The benefit of 
pioglitazone was consistently greater in secondary than 
primary prevention (Fig. 1); however, group differences 
between patients with and without established CVD 
were not statistically significant.

Notably, SGLT-2 inhibitors and GLP-1 receptor ago-
nists, which are now acknowledged as the best novel 
therapies targeting both diabetes and cardiovascular 
risk, showed a similar magnitude of the effect in reduc-
ing MACE by 14% with a HR of 0.86 SGLT-2 inhibitors 
[19, 20] (though for canagliflozin was not significant [21] 
and by 16% that is 0.74 to 0.88 for GLP1 receptor ago-
nists [22, 23]. A recent comprehensive umbrella meta-
analysis confirmed this point [24]. Although the use of 
the HR is not free from biases [25], these data show that 
he effects size of MACE reduction obtained with piogl-
itazone therapy is comparable to the one observed with 
the newer (and more expensive—for both the patient and 
the healthcare system) drugs that recently revolutionized 
the approach to T2D. With appropriate prescription and 
titration, this would make of pioglitazone a cost-effective 
cardioprotective agent in the arsenal of the clinical dia-
betologist. The aim of the present work is neither to redo 
a metanalysis nor to systematically review all the studies 
on cardiovascular outcomes with pioglitazone, which can 
be found elsewhere; we acknowledge that this is a limit 
of this manuscript. Our aim is to highlight the effect size 
of MACE reduction obtained with pioglitazone with a 
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clinical-oriented point of view to help the clinician take 
aware and critical decisions.

Heart failure
Large RCTs, including the PROactive [13, 26], 
RECORD [27], and ADOPT [28] trials, showed an 
increased hospitalization rate for HF associated with 
pioglitazone or rosiglitazone treatment. However, in 
the recent IRIS trial [12] and in a large population-
based Asian cohort [29], no difference emerged in the 
rate of hospitalization for HF among people at low-risk 
of HF, with proper clinical surveillance and dose titra-
tion of pioglitazone treatment. Consistently, a recent 

meta-analysis confirmed an increased risk of incident 
HF in patients treated with pioglitazone (1.34, 1.11–
1.57), which however appeared limited to those with 
established CVD (Fig. 1) [18]. These observations sug-
gest that pioglitazone may exacerbate HF particularly 
in patients with multiple risk factors and/or suffering 
from subclinical HF. The predominant mechanism, 
which will be discussed below, may be volume expan-
sion due to renal fluid retention, without alterations 
in cardiac function or structure [14]. According to 
this evidence, the current guidelines from the Ameri-
can Diabetes Association (ADA) [30] and the Ameri-
can Heart Association (AHA) [31] recommend that 

Fig. 1 Effects of pioglitazone on cardiovascular endpoints. Metanalysis subgroup analysis on pioglitazone trials on major adverse cardiovascular 
events (MACE) by primary and secondary prevention. Pioglitazone is associated with a reduction in overall MACE, non-fatal myocardial infarct, and 
non-fatal stroke, while having a neutral effect on cardiovascular death and all-cause mortality. In overt heart failure, conversely, it is associated with 
an increase in the risk of hospitalization. Modified with permission from Zhou Y et al. [18]. p* = p for heterogeneity between subgroups
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pioglitazone should be used cautiously in patients with 
symptomatic HF or at risk of acute decompensated HF.

Effects of pioglitazone on the heart
The effects on cardiovascular outcomes shown by 
pioglitazone rely on mechanisms that remain largely 
unknown. The polyhedric effects exerted by this drug 
can be understood by looking at its main pharmaco-
logical target, the nuclear receptor PPAR-γ, a complex 
transcription factor that is present in almost all tis-
sues and modulates delicate metabolic, inflammatory, 
and proliferative pathways. Also, PPAR-γ independ-
ent mechanisms have been proposed as well, further 
amplifying the potential cardioactive effects of piogl-
itazone. The effects of pioglitazone on the heart are 
schematized in Fig 2.

Left ventricular systolic and diastolic functions
Human studies
A relevant increase in LV ejection fraction (LVEF) and 
stroke volume was reported in both T2D patients and 
normal glucose tolerant subjects after 24 weeks of piogl-
itazone treatment [32], and a borderline increase in LVEF 
was observed in 30 diabetic patients after 26 weeks of 
treatment alike [33]. Another study on 24 diabetic sub-
jects randomized to either pioglitazone or placebo con-
firmed an improvement in stroke volume and LVEF with 
pioglitazone [34]. With the exception of one study in 88 
diabetic patients, which reported no change in diastolic 
indices with pioglitazone [35], numerous other works 
on subjects with preserved systolic function reported 
consistent improvements in diastolic function with 
amelioration of early-to-atrial mitral flow (E/A) ratio, 
improvement in tissue Doppler values such as E/e’ and 
other diastolic parameters, irrespective of the presence of 

Fig. 2 Effects of pioglitazone on the heart. Based on literature review, the effects of the treatment with pioglitazone on diverse cardiac functions 
are reported. The effects on electrophysiology and arrhythmias, ischemia, left ventricle functions, metabolism, cardiac remodeling, pulmonary 
vasculature and right ventricle, and on neurohormonal activation are reported. In each section, evidence is subdivided in in vitro, animal, and 
human studies. For more details, see main text
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hypertension, diabetes, and/or diastolic dysfunction [17, 
34, 36–41].

Animal studies
Concordantly with human observations, pioglitazone 
reduced LV diastolic and systolic dimensions, together 
with improved contractility in diabetic [42] and non-
diabetic murine models [43, 44]. Also, diastolic function 
was significantly ameliorated as several diastolic param-
eters were improved by the treatment in diabetic mod-
els [45]. Notably, pretreatment of mice with pioglitazone 
improved both systolic and diastolic functions regard-
less of the etiologic cause, being either ischemia [44, 46], 
pressure overload or high-fat diet [43]. It also reduced 
aortic valve calcification in non-diabetic, hypercholester-
olemic rats [47].

Cardiac remodeling
Human studies
Few studies reported the effects of pioglitazone on 
changes in cardiac size and function, the results being 
somewhat controversial. Mean aortic diameter and 
left atrial systolic and diastolic volumes significantly 
decreased after 6 months of therapy with pioglitazone 
in 49 T2D subjects [38]. However, different authors 
reported that pioglitazone treatment was associated with 
a 17% increase in left atrial volume in 30 T2D patients 
after 26 weeks of pioglitazone treatment [33], while oth-
ers [36] found no change in absolute values of left atrium 
volume and LV end-diastolic diameter in 30 non-dia-
betic patients with essential hypertension after 6 month 
pioglitazone treatment. The different response may be 
due to the rather small sample size of these observa-
tion, coupled with the different baseline characteristics 
of the patients. As such, there is still uncertainty about 
pioglitazone effect on cardiac remodeling in humans, and 
mechanisms are still unknown. Noteworthy, pioglita-
zone reduces plasma collagen III in humans [37], possibly 
exerting anti-fibrotic effects.

Animal studies.
In vitro and in vivo observations showed pioglitazone to 
have anti-hypertrophic potential in cultured mice cardi-
omyocytes via inhibition of vascular endothelial growth 
factor (VEGF) [48] and inhibition of pressure overload-
induced increases in cardiac wall thickness and myo-
cyte diameter in wild-type mice. Moreover, it reduced 
the increase in the heart weight-to-body weight ratio 
in heterozygous non-diabetic PPAR-γ-deficient mice 
[49], suggesting PPAR-γ independent activity. Moreo-
ver, it was shown to have beneficial long-term effects 
on cardiac remodeling in non-diabetic stroke-prone 
rodents by normalizing echo-assessed left ventricle (LV) 

geometry, reversing concentric remodeling, and decreas-
ing myocyte diameter, interstitial fibrosis and number 
of myofibroblasts [50]. These effects are coupled with 
the inactivation of well-established transcription factors 
involved in cardiomyocyte hypertrophy NFATc2 and 
NF-kB/p65 [51] that coordinate a program of reactiva-
tion of fetal ventricular gene expression profiles typical 
of (adverse) cardiac remodeling [52]. In this scenario, 
convincing data support the anti-fibrotic effect of piogl-
itazone in cardiac remodeling in several studies docu-
menting a consistent reduction of histologically proven 
cardiac fibrosis after pioglitazone treatment [53, 54]. Par-
ticularly, in a model of non-diabetic ischemia-reperfusion 
injury, pioglitazone reduced the synthesis of extracellular 
matrix, particularly collagen I and III, tissue inhibitor of 
metalloproteinase (TIMP)-1, and matrix metalloprotein-
ase (MMP)-2 in cardiac fibroblasts, a pathway involving 
the PPAR-γ-dependent inhibition of NF-kB [55]. Also, 
inhibition of connective tissue growth factor (CTGF) 
expression [50] and attenuated angiotensin II-induced 
cardiac fibrosis by reduced myocardial macrophage infil-
tration were reported [56]. Other recent works observed 
reduced fibrosis through reduced expression of TGF-β 
in macrophages from diabetic mice [57] through PTEN 
[58], Smad3 activation [59], and the newly discovered 
SIRT3/β-catenin/PPAR-γ axis, which prevent cardiac 
fibroblasts from transdifferentiating into myoblasts [60]. 
Based upon these observations, PPAR-γ agonists have 
been tested as potential therapeutic agents in the sup-
pression of collagen synthesis in the lung and the liver, 
both in vitro and in vivo [61], with encouraging results.

Electrophysiology and arrhythmias
Human studies
Several trials demonstrated that pioglitazone treat-
ment might have beneficial influence in atrial fibrillation 
(AFib). Although it did not influence the recurrence of 
persistent AFib after successful electrical cardioversion in 
T2D subjects [62], it proved effective in reducing the rate 
of progression from persistent to permanent AFib [63], 
improved the preservation of sinus rhythm and reduced 
the reablation rate in diabetic patients with paroxysmal 
AFib after catheter ablation [64]. These results were con-
firmed by one metanalysis conducted in 2017 on more 
than 1,30,000 diabetic patients in which pioglitazone 
treatment was associated with a 30% risk reduction of 
developing AFib (OR = 0.73, p = 0.0003) with reduced 
risk for both new-onset AFib (OR = 0.77, p = 0.002) 
and AFib recurrence (OR = 0.41, p = 0.002) [65]. As a 
consequence, pioglitazone has been proposed for AFib 
primary and secondary prevention in diabetes [66]. The 
mechanism might rely either on its anti-fibrotic effects 
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(as discussed above) or on the reduction of glycation end 
products [63], although this is not clear.

Animal studies
Pioglitazone prevented AFib by increased membrane 
potential through electrophysiological remodeling both 
reduced angiotensin 2-induced potassium channel 
remodeling on isolated non-diabetic animal atrial myo-
cytes and attenuation of angiotensin 2-induced L-type 
calcium channel remodeling [67]. Furthermore, it can 
reduce atrial fibrosis and normalize interatrial conduc-
tion time [68] by suppression of angiotensin 2-induced 
CTGF expression and proliferation in atrial fibroblasts 
from both diabetic and non-diabetic animals, with mech-
anisms encompassing various signaling pathways such as 
TGF-β1/Smad2/3 and TGF-β1/TRAF6/TAK1 [69, 70], 
p-ERK1/2, p-JNK, the mitochondrial apoptotic signaling 
pathway, and the caspase system [67]. The mechanism is 
independent from the metabolic effects of the drug, and 
seemingly acts through the PPAR-γ receptor [67], but 
this was never directly demonstrated. In canine ventric-
ular myocytes [71], high doses of pioglitazone altered a 
wide variety of ion currents in a concentration-depend-
ent manner, namely  INa,  Ito,  ICa,  IKr,  IKs,  IK1, and the ATP-
sensitive potassium current. However, it is not likely that 
normally dosed pioglitazone can significantly alter ven-
tricular electrogenesis in healthy humans, apart from 
overdose or inherited or acquired long QT syndrome, 
wherein it might favor arrhythmias and particularly early 
afterdepolarizations. However, no sudden cardiac death 
has ever been reported with pioglitazone therapy.

Energetic metabolism
Human studies
In cardiomyocytes, just like in adipose tissue, the genes 
activated by PPAR-γ stimulate lipid uptake and adipo-
genesis [72]. As such, alterations in its cardiac expression 
cause disturbances in glucose and fatty acids metabolism, 
contributing to intracellular triglyceride accumulation 
and cardiac lipotoxicity [73] with resulting significant 
LV dysfunction [74]. In humans, pioglitazone treatment 
enhances insulin-stimulated myocardial glucose uptake 
as measured through 18FDG PET across the whole spec-
trum of glucose tolerance [32, 41, 75], including T2D with 
coronary artery disease [76]. This is related to a reduc-
tion of serum free fatty acids [77, 78], since pioglitazone 
promotes fatty acid transport into the cardiomyocytes 
inducing the expression of fatty acid-binding protein 4 
(FABP4) and fatty acid translocase (FAT)/CD36 in capil-
lary endothelial cells [79]. However, the clinical implica-
tions are poorly known, and more studies are required. 
Interestingly, since right ventricular dysplasia has been 
linked to changes in PPAR-γ-dependent pathways in 

cardiomyocytes energetic metabolism leading to myo-
sin dysfunction [80], pioglitazone has been proposed as 
a possible therapy for this condition, by acting through 
alterations in PPAR-γ-dependent Wnt/β-catenin canoni-
cal pathway [81].

Animal studies
Due to low myocardial PPAR-γ expression, in vivo effects 
of TDZs on cardiac metabolism are generally thought to 
be indirect and secondary to their lipid lowering proper-
ties [82], and a direct regulation of cardiac metabolism 
by PPARγ remains a subject of debate. Pioglitazone can 
induce lipid accumulation in the heart of rats despite 
concurrent reduction in plasma free fatty acids concen-
tration, thus suggesting a direct action of PPARγ agonist 
on the cardiomyocyte [83] and seemingly a de novo syn-
thesis of ceramides [84]. More recently it has shown that 
tissue-specific loss of PPARγ alters heart function and 
induces myocardial hypertrophy [85, 86] with mitochon-
drial oxidative damage [86] although no effect on gene 
expression controlling lipid and glucose metabolism at 
baseline was observed [85]. This modulation of cardio-
myocyte metabolism might have a direct effect on the 
functions of the heart. Indeed, PPAR-γ transgenic mice 
over-expressing PPAR-γ develop a dilated cardiomyopa-
thy with evidence of increased lipid and glycogen stores, 
increased mRNA levels of genes for fatty acids oxidation, 
and distorted architecture of the mitochondrial inner 
matrix [87]. In contrast, treatment with PPAR-γ ago-
nists improved heart function in rodent models of lipo-
toxic dilated cardiomyopathy with unclear mechanisms 
[88, 89], since rosiglitazone treatment of wild-type mice 
reduced expression of PPARγ targets [87].

Ischemia–reperfusion injury
Human studies
Several observations reported a protective effect on myo-
cardial ischemia-reperfusion injury. In diabetic patients 
with ST-elevation MI (STEMI), pretreatment with piogl-
itazone resulted in better myocardial reperfusion. This 
was described by blush score, slow flow/no-reflow phe-
nomenon, resolution of ST elevation, and lesser rep-
erfusion injury as defined by absence of reperfusion 
arrhythmias, better improvement of LVEF, and lower 
peak creatin kinase levels [90].

Animal studies
In animals, available evidence showed reduction in 
infarct size in mice and rats acutely pretreated with 
pioglitazone [91–95] through enhanced anti-oxidant 
superoxide dismutase and glutathione peroxidase con-
centrations [93], activation of ERK and COX2 [96], and 
reduced cardiomyocyte apoptosis via enhanced Bcl-2 
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protein expression, reduced Bax and caspase 3 protein 
expression [46]. Also, pioglitazone attenuated reper-
fusion arrhythmias after ischemic-reperfusion injury 
in diabetic rats [97], and ameliorated the deteriorated 
ischemic preconditioning found in diabetic animals [98, 
99]. The treatment with PPAR-γ agonists decreased the 
expression of pro-inflammatory markers and reduced 
accumulation of neutrophils and macrophages in ani-
mal reperfused myocardium possibly through activa-
tion of NF-kB [100], an observation confirmed by a 
recent study in PPAR-γ knock-out mice [55]. As such, 
supported by the observation that an anti-inflamma-
tory effect is coupled with protection from ischemia in 
other tissues alike -namely liver [101], kidney [102], and 
gut [103]-, we can hypothesize that pioglitazone might 
in part protect from ischemia–reperfusion injury via 
an anti-inflammatory effect. Still, the drug might also 
exert its protective effect on ischemia via a metabolic 
action mediated by cardiomyocyte-derived adiponectin 
[104], which has been observed to be protective during 
ischemia [105].

Neurohormonal activation
Human studies
Pioglitazone can modulate diverse neurohormonal sys-
tems that are known to positively affect the cardiovascu-
lar system. In obese subjects with metabolic syndrome, 
the sympathetic nervous system response to an oral car-
bohydrate load is enhanced by pioglitazone, with signifi-
cant increase in overall norepinephrine spillover response 
[106], despite no changes in resting sympathetic drive or 
norepinephrine disposition [39]. It can also increase adi-
ponectin release [104] with beneficial effects on diastolic 
function in hypertensive patients [36]; notably, this is one 
of the mechanisms proposed for the beneficial effects 
of SGLT-2 inhibitors. One trial on 94 diabetic patients 
undergoing coronary angioplasty reported a significant 
reduction of brain natriuretic peptide (BNP) levels with 
pioglitazone with respect to other hypoglycemic treat-
ments [17]. Similarly, lower BNP values [107] in 223 
diabetic subjects reported with the combined sulphony-
lurea-pioglitazone therapy with respect to other medi-
cations. On the contrary, two smaller studies observed 
a significant increase in BNP values during pioglitazone 
treatment [108, 109], with elevated BNP values at base-
line predicting a subsequent increase [109], suggesting 
that pioglitazone negative effect on BNP may only occur 
when cardiac function is already altered. One study on 
30 diabetic subjects revealed an increase in N-terminal-
proBNP (NT-proBNP) after 6 months of treatment with 
pioglitazone with a parallel slight increase in LV and left 
atrial volumes [33], leaving the question open.

Animal studies
At the cellular level, it can down-regulate the expres-
sion of angiotensin receptor type 1 (AT1-R) in neonatal 
non-diabetic rat cardiac fibroblasts, thus reducing the 
angiotensin-induced cardiac fibrosis and remodeling 
[110]. This might explain the slight increase of renin 
activity observed with pioglitazone in healthy subjects 
[111]. Also, PPAR-γ activators directly inhibited strain- 
and reperfusion-induced BNP expression in non-dia-
betic cultured cardiomyocytes and cardiac fibroblasts 
[55, 112].

Pulmonary vasculature and right ventricular function
Human studies
In human pulmonary vascular wall, PPAR-γ recep-
tors are normally expressed by endothelial and smooth 
muscle cells [113], while their expression appears 
diminished in patients with primary and secondary 
pulmonary hypertension [114]. In isolated pulmonary 
arteries from healthy subjects, pioglitazone induced a 
concentration- and time-dependent relaxation with a 
mechanism involving nitric oxide (NO) production that 
is only partially dependent on vascular endothelium 
and dependent on PPAR-γ activity [115].

Animal studies
Similarly to humans, several animal studies reported 
improved pulmonary hypertension and right ven-
tricle (RV) hypertrophy [116], pulmonary hyperten-
sion prevention [117, 118] and pulmonary vasculature 
remodeling [119] by PPAR-γ-dependent inhibition of 
transcription factors NFAT and NF-kB [120]. The drug 
might also have a role in reducing right ventricular dys-
function [121, 122], via inhibition of NF-kB and NFAT 
in cardiomyocytes of the failing RV [121] and normal-
ize epigenetic and transcriptional regulation factors 
[123] primarily related to insulin resistance, disturbed 
lipid metabolism and mitochondrial morphology/func-
tion [121, 124, 125].

Effects of pioglitazone on the vascular system
Several human and animal studies suggest a benefi-
cial role for pioglitazone on the vascular system, par-
ticularly on atherosclerosis reduction. The effects of 
pioglitazone on the vascular system are schematized in 
Fig. 3.

Human studies
Pioglitazone can reduce aortic pulse wave veloc-
ity (PWV) irrespective of the presence of diabetes 
[126], and slow progression of carotid intima-media 
thickness in T2D subjects as measured with either 
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ultrasonography [127–129] or fluorodeoxyglucose 
positron emission tomography/computed tomography 
(FDG-PET/CT) [130]. This was also observed both in 
non-diabetic patients with stable coronary artery dis-
ease and carotid plaques [130] and in glucose-intoler-
ant patients [131]. Furthermore, pioglitazone positively 
affects plaque remodeling by inducing reduced coro-
nary neointima hyperplasia in diabetic subjects [132], 
diminished intravascular ultrasonography (IVUS)-
assessed neointima volume after stent implantation in 
non-diabetic subjects [133, 134], and slowed progres-
sion of coronary atherosclerosis as quantified through 
IVUS in comparison to glimepiride in 360 diabetic sub-
jects with coronary atherosclerosis [135]. Noteworthy, 
it significantly decreased in-stent restenosis after coro-
nary stent implantation in T2D patients [136] as also 
confirmed by a later metanalysis [137]. On the contrary, 

no beneficial effect was seen by Lee et al. [138] neither 
on in-stent restenosis nor on coronary plaque volume 
measured by IVUS, though this might be due to the 
low administered dose (15 mg/die). Two metanalysis 
studied the effect of pioglitazone in reducing the in-
stent restenosis and coronary atherosclerosis. The first 
by Zhang MD et  al. [139] in 2014 reported a neutral 
effect, while the second by Zhao SJ et al. [140] in 2016 
reported a beneficial effect for pioglitazone both on 
in-stent restenosis (0.48, 0.35–0.68) and target lesion 
revascularization (0.58, 0.38–0.87). Furthermore, sev-
eral studies investigated the effect of pioglitazone on 
endothelial function in humans through flow-medi-
ated dilation in brachial artery in either diabetic [141, 
142], glucose intolerant [143, 144], or non-diabetic 
[126] patients demonstrating a significant beneficial 
effect for pioglitazone on ameliorating endothelial 

Fig. 3 Effects of pioglitazone on the vascular system and on cardiovascular risk factors. The effects of the treatment with pioglitazone on the 
vasculature and on modifiable risk factors are illustrated. The effects on atherosclerosis, endothelial function and blood pressure are reported, 
together with hydro-electrolyte homeostasis, the effects on the adipose tissue, and on blood lipids. For more details, see main text
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dysfunction irrespective of glucose tolerance pheno-
type, a result further confirmed by a recent metanaly-
sis [145]. Intriguingly, this appears to be independent 
of its insulin-sensitizing action [146, 147], and possi-
bly related to the known increase in adiponectin levels 
[143]. Nonetheless, in the study by Davidson et al. [148] 
the reduction of carotid intima-media progression was 
related to an increase in HDL cholesterol at 24 weeks 
of treatment, suggesting that even other factors might 
be at play.

The mechanisms seemingly rely on anti-inflamma-
tory and anti-oxidative effects, reducing carotid plaque 
inflammation in patients with higher baseline inflam-
mation [130], reducing circulating natural killer cells, 
diminishing IL-6 and monocyte chemoattractant protein 
(MCP)-1 -also known as GDF15- levels, downregulating 
chemokine receptor 2 at 48 h after stent implantation in 
T2D [134]. With pioglitazone treatment, lower IL-10 lev-
els at ten days after implantation was achieved, together 
with possible anti-proliferative effects on vascular 
smooth muscle cells [134]. This hypothesis is supported 
by the correlation of reduced aortic PWV with the reduc-
tion of clinical and biohumoral indices of inflammation 
in non-diabetic subjects with rheumatoid arthritis [126].

Animal studies
In animals, PPAR-γ activation has been implied in inhib-
iting VEGF-induced angiogenesis [149] and in decreas-
ing the inflammatory response of several cardiovascular 
structures, particularly endothelial cells [150]. Pioglita-
zone can also protect endothelial progenitor cells from 
hyperhomocysteinemia via reduced reactive oxygen spe-
cies (ROS) production by NADPH and PKC downregu-
lation [151], inhibition of TGFβ1-induced mitochondrial 
activation and vascular smooth muscle cell proliferation 
by regulating two glucose metabolism-related enzymes, 
platelet isoform of phosphofructokinase (PFKP, a PPAR-γ 
target, via miR-331-5p) and protein phosphatase 1 regu-
latory subunit 3G (PPP1R3G, a Smad3 target) [152]. 
Further, pioglitazone treatment suppressed excess lipid 
accumulation and superoxide production in the aorta 
in an angiotensin II-induced rat model of hypertension 
and retarded the progression of atherosclerosis [153]. 
Moreover, PPAR-γ agonists have been shown to down-
regulate both basal and TNF-α-induced Receptor for the 
advanced glycation end products (RAGE) expression in 
endothelial and mesangial cells [154], and to reduce the 
production of endothelin-1 and ROS by directly block-
ing cyclo-oxygenase (COX)-2 [155], exerting a protective 
effect on endothelial dysfunction through anti-oxidant 
activity. Notably, in spontaneously hypertensive rats, 
pioglitazone improved NO availability through increased 

NO synthetase (NOS) expression and AT2R with an 
overall significant blood pressure reduction effect [156].

Effects of pioglitazone on cardiovascular risk 
factors
Body weight, adipose tissue, and blood lipid profile
Pioglitazone treatment is associated with an increase in 
insulin sensitivity in diabetic subjects, notwithstanding 
its neutral [157] or increasing effect in body weight of 
about 2.5–3 kg [158]. This is due to a change in adipose 
tissue distribution with reduced visceral fat in favour of 
subcutaneous fat [157, 159–161]; in non-diabetic indi-
viduals it promotes an increase in total body fat con-
tent with preferential accumulation in the lower body 
parts and reduction in waist-to-hip ratio [162]. Both in 
animals [163] and humans [161, 162, 164], pioglitazone 
increases the number and the activity of small adipocytes 
promoting differentiation of preadipocytes to adipocytes 
in visceral and subcutaneous adipose tissue stimulat-
ing glucose uptake, storage, and metabolism [165, 166]. 
In adipose tissue, pioglitazone induces mitochondrial 
biogenesis, the synthesis of mitochondrial lipid metabo-
lism enzymes [167, 168], and alters extracellular matrix 
and cytoskeletal proteins [167]. A deeper characteriza-
tion of the metabolic effects of pioglitazone in human 
adipose tissue is needed, since some cardioprotective 
mechanisms might involve adipocytokines. Furthermore, 
pioglitazone treatment determines a reduction in total 
cholesterol, LDL-cholesterol, triglycerides, and plasma 
free fatty acids; it also converts small dense atherogenic 
LDL particles into larger ones, and increases HDL-cho-
lesterol [169–171]. Remarkably, pioglitazone treatment 
reduces Lp (a) [169] as well as procoagulant factors [172]. 
According to the current knowledge, all these mecha-
nisms are expected to provide cardiovascular benefits.

Blood pressure
Human studies
A slight but consistent blood pressure lowering effect 
has been consistently reported with pioglitazone [39, 40, 
128, 141, 173–175], achieving an average reduction by 
3–5 mmHg in systolic blood pressure after 12 months of 
treatment. Interestingly, pioglitazone at the oral dose of 
30 mg/die was effective in normalizing both blood pres-
sure and serum potassium levels in one case of resistant 
hypertension due to primary hyperaldosteronism in a 
diabetic subject [176]. In fact, a slight antagonistic effect 
on the angiotensin receptors has been observed, with a 
consequent increase in plasma renin activity [111]. Aside 
from its direct effect on absolute blood pressure val-
ues, its protective effect is seemingly dependent upon 
a reassessment of the cardiovascular circadian clock, 
being PPAR-γ a main component of the vascular system 
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circadian regulation, known to be altered by metabolic 
pathologic conditions such as obesity and diabetes [177, 
178]. In diabetic patients, pioglitazone is known to re-
establish the circadian rhythm of blood pressure from a 
“non-dipper” to a “dipper” pattern, restoring the noctur-
nal decline in blood pressure in parallel with reduction in 
the HOMA index [179, 180]. Decreased blood pressure 
and enhanced baroreflex sensitivity with pioglitazone 
was reported after an oral carbohydrate load in obese 
subjects with metabolic syndrome [106], and there is ini-
tial evidence that this drug might have a beneficial role 
in restoring the sympatho-vagal balance in diabetic auto-
nomic cardiomyopathy [181].

Animal studies
The observations on humans are confirmed in animal 
studies [182] in hypertensive models [156, 183] wherein 
a reduction in hypertension-related end organ dam-
age, including (LV) hypertrophy [184], proteinuria [185], 
and white matter lesions and cognitive impairment were 
reported [186]. One plausible determinant of the anti-
hypertensive effect of piogliazone is the attenuation of 
vascular contractility via a NO-independent mechanism 
that directly involves intracellular calcium handling 
through the inhibition of L-type  Ca2+ currents in vas-
cular smooth muscle cells [187] independently and syn-
ergistically with insulin [188]. Pioglitazone can directly 
regulate Rev-erb-α, a transcription factor influencing 
Brain and Muscle Arnt-Like protein (BMAL)-1 [178, 
189], a key clock-gene involved in cardiovascular rhyth-
micity [190] and possibly accounting for its effect on 
the circadian clock. Yet, whether the main target cells 
of pioglitazone are vascular smooth muscle cells, liver, 
peripheral adipose tissue, or perivascular adipose tissue 
is still matter of debate [178].

Fluid and electrolyte homeostasis
Oedema was early recognized as a frequent and poten-
tially clinically relevant side effect of pioglitazone, possi-
bly precipitating HF.

Human studies
Fluid retention and peripheral oedema were reported in 
4–7% of pioglitazone-treated patients, that is 3–4 times 
more frequent than placebo, an effect even greater in 
combination with other oral anti-hyperglycemic treat-
ments (up to 15–18%) -and especially insulin therapy 
(~22%) [191, 192]. The mechanism, which can be not 
always counteracted by diuretic therapy and that is 
relieved by drug withdrawal, is seemingly multifacto-
rial and still poorly understood. In fact, pioglitazone can 
inhibit L-type calcium currents [187] thus possibly hav-
ing an effect similar to that of dihydropyridine calcium 

channel blockers. It also increases VEGF activity [193] 
which leads to capillary wall permeabilization. Yet, renal 
sodium-water increased reabsorption plays a major role, 
accounting for up to 80–90% of thiazolidinediones-
related fluid retention [194]. In human proximal tubule 
cells this is mainly achieved through enhanced expres-
sion of sodium-hydrogen exchangers (NHE3) [195–198], 
proximal tubule aquaporine (AQP) 1 and 7 channels 
[196], and possibly a direct pioglitazone-driven sodium 
reabsorption [111]. Moreover, insulin has been known to 
stimulate sodium absorption along various nephron seg-
ments, potentially acting synergistically with pioglitazone 
[199] and possibly accounting for the greater incidence of 
oedema formation during combined therapy.

Animal studies
Animal studies report conflicting results on a reduction 
in glomerular filtration rate with an effect size that was 
largely overcome by tubular reabsorption [200, 201]. This 
result was later confirmed by the potent PPARγ agonist, 
farglitazar (GI262570), which induced plasma volume 
expansion in normal rats with significant reduction of 
hematocrit, hemoglobin, and serum albumin concen-
tration but no measurable effect on GFR, renal blood 
flow, or filtration fraction [202]. These results suggest 
that thiazolidinediones-induced fluid retention occurs 
mainly by tubular rather than glomerular mechanism. 
Several works suggest that it might induce plasma vol-
ume expansion acting either on the cortical collecting 
duct via enhanced expression of the γ subunit of epithe-
lial Na channel (ENaC) [203], or on the renal proximal 
tubule through sodium-coupled bicarbonate transport-
ers, sodium-hydrogen exchangers, NHE3 [200], and 
basolateral rheogenic  Na+/HCO3 cotransport (NBCe1) 
[204]. Finally, also the Henle’s loop bumetanide-sensitive 
Na–K–2Cl cotransporter (NKCC) may be upregulated 
by pioglitazone [205]. However, the exact mechanisms 
accounting for the renal effects of pioglitazone remain 
unclear.

Clinical considerations
Pioglitazone has some adverse effects that warrant cau-
tion in at risk patients and limited its use in clinical prac-
tice, including body weight gain, peripheral oedema, 
increased congestive HF risk, decreased bone mineral 
density, dilution anemia, and possibly increased risk for 
bladder cancer [2]. Despite these safety concerns, piogl-
itazone has recently gained renewed popularity after sev-
eral clinical trials reporting reduction in atherosclerosis, 
AFib, and atherosclerosis-related events. Of note, it posi-
tively modulates numerous cardiovascular functions and 
risk factors such as systemic blood pressure, blood lipids, 
and adipose tissue physiology, thus leading to slowed 



Page 11 of 17Nesti et al. Cardiovasc Diabetol          (2021) 20:109  

atherosclerosis progression. It can also restore cardiovas-
cular rhythmicity, increase LV systo–diastolic functions, 
protect against myocardial ischemia and fibrosis, as well 
as possibly reduce pulmonary hypertension. The exact 
mechanisms remain unclear, seemingly encompassing 
anti-inflammatory, anti-oxidative, anti-hypertrophic, 
anti-fibrotic, and vasodilatory effects -both PPAR-γ 
dependent and independent, which to date remain rather 
unclear in their precise molecular mechanisms. In this 
scenario, it is important to underscore that the treatment 
with pioglitazone is low-cost, widely available, without 
significant drug interactions, and with little side effects 
such as mild body weight gain and risk of oedema for-
mation. Even without a direct negative influence on car-
diac function, the retentive effect of pioglitazone may be 
clinically relevant, as it can possibly lead to overt HF by 
unmasking previously undiagnosed cardiac dysfunction. 
However, with aware appropriate prescription and titra-
tion in those with or at high risk for acute decompensated 
HF, the above described polyhedric cardiovascular ben-
efits of pioglitazone identify this drug as a useful tool in 
the arsenal of the clinical diabetologist, particularly when 
used in combination with SGLT-2 inhibitors. In fact, the 
depletion of extracellular fluid volume by SGLT-2 inhibi-
tors is expected to contrast the expansion of fluid volume 
by TZDs, while the beneficial effects on cardiovascular 
prevention of the two drug classes are potentially addi-
tive or even multiplicative, due to their different mecha-
nisms of action. For these arguments, TZDs and SGLT-2 
inhibitora have been proposed by DeFronzo et  al. [206, 
207] as ideal partners in combination therapy. Therefore, 
a diabetic subject with insulin resistance, non-controlled 
or non-dipper hypertension, and at high risk for or with 
multi-vessel atherosclerosis perfectly fits the ideal can-
didate for pioglitazone. The concomitants reduction of 
paroxysmal AFib incidence of recurrence further support 
the therapeutic choice.

Concluding remarks
Pioglitazone is a PPAR-γ agonist acting as an insu-
lin sensitizer with cardiovascular protective potential, 
despite the risk of fluid imbalance in overt HF. The 
pleiotropic and beneficial effects on cardiovascular 
risk factors are exerted above and beyond glycemic 
improvement, encompassing myocardial beneficial 
effects both directly, through anti-fibrotic and anti-
remodeling actions, and indirectly, by improving vas-
cular homeostasis. Accordingly, clinical trials have 
observed its capacity of slowing atherosclerosis pro-
gression, possibly accounting for the reduction in car-
dio- and cerebrovascular events. The mechanisms 
involved might rely either on cardiac and vascular 
anti-remodeling properties (endothelium protective, 

inflammation-modulating, anti-proliferative and anti-
fibrotic properties) and/or on metabolic (adipose tissue 
metabolism, increased HDL cholesterol) and neurohor-
monal (renin-angiotensin-aldosterone system, sympa-
thetic nervous system, and adiponectin) modulation of 
the cardiovascular system. These polyhedric beneficial 
effects make pioglitazone a useful tool in the arsenal 
of the clinical diabetologist, especially in the insulin-
resistant, hypertensive patient at high cardiovascular 
risk.
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